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Abstract—Human action recognition based on the depth maps
is an important yet challenging task. In this paper, a new
framework based on the 3D motion trail model (3DMTM) and
Pyramid Histograms of Oriented Gradient (PHOG) is proposed
to recognize human actions from sequences of depth maps.
Specifically, a discriminative descriptor called 3DMTM-PHOG
is proposed for depth-based human action recognition. The
3DMTM is generated through the entire depth video sequence to
encode additional motion information from three projected or-
thogonal planes. By adding pyramid representation, Histograms
of Oriented Gradient (HOG) descriptor is extended to PHOG
which can well characterize local shapes at different spatial grid
sizes for action recognition. PHOG is then computed from the
3DMTM as the 3DMTM-PHOG descriptor for the representation
of an action. The proposed approach based on 3DMTM-PHOG
descriptor is evaluated on MSR Action3D dataset captured by
depth cameras. Experimental results show that the proposed ap-
proach outperforms the state-of-the-art methods and demonstrate
the effectiveness and robustness of the proposed 3DMTM-PHOG
descriptor.

I. INTRODUCTION

Human action recognition has been a widely studied area in
computer vision. It has many potential applications including
human computer interaction, video surveillance, health care
and content-based video retrieval. However, it is still a chal-
lenging task to recognize human actions accurately due to the
large intra-class variability and inter-class similarity of actions,
cluttered background, possible camera movements and illumi-
nation changes. There are two major issues for human action
recognition. One is the sensor used for capturing the action
information of human, and the other one is the representation
of human actions that are dynamic and ambiguous [26].

In the past decades, research of human action recognition
has concentrated on learning and recognizing human actions
from video sequences captured by ordinary RGB cameras. The
human actions are performed in 3D space, and capturing 3D
human movements from RGB cameras is a very difficult task.
Recently, the introduction of cost-effective depth cameras, e.g.
the Microsoft Kinect, provides new possibilities to address
difficult issues in human action recognition. Compared with
ordinary RGB cameras, depth cameras can provide 3D depth
data so that the infromation of actions can be more discrim-
inative. Moreover, depth maps are insensitive to illumination
changes. Besides, the motion ambiguities, such as the huge
color and texture variability induced by clothing, hair, skin
and background, could be bypassed. Depth information has
long been regarded as an essential part of successful action
recognition [8]. Thus, recent research work has been motivated

to explore more efficient approaches based on depth maps. In
addition, it is a hot topic that how to extract robust features
from depth human action maps in an efficient way.

There is extensive literature in action recognition in a
variety of research areas, including computer vision, machine
learning, pattern recognition and signal processing[1, 23]. The
spatio-temporal volume-based method is extensively adopted
by comparing the similarity between two action volumes,
and various detection and representation of spatio-temporal
volumes have been proposed [2, 7, 9–11]. Other methods
based on trajectory have also been widely explored for human
activity recognition [18, 21]. In these approaches, human
actions are interpreted by a set of body joints or other interest
points. However, it is difficult to quickly and reliably extract or
track body joints from ordinary RGB images. With the launch
of depth cameras, the work of Shotton et al. [20] provides
an efficient human motion capturing technology to accurately
estimate the 3D skeleton joint positions from a single depth
image. Thus, many methods using estimated 3D skeleton joint
points [26, 28, 29] are popular for action recognition. However,
this kind of methods has the limitation that it requires reliable
skeleton data.

In this paper, we focus on recognizing human actions from
the original depth data. An effective human action recognition
method using 3DMTM-PHOG descriptor is presented in this
paper. We propose Pyramid Histograms of Oriented Gradi-
ent (PHOG) descriptors extracted from the 3D Motion Trail
Model (3DMTM) of actions. The 3DMTM [13] is employed
to represent action motion information and static posture
information in 3D space by projecting depth maps onto three
orthogonal Cartesian planes. This model contains disparity
information from the corresponding depth maps. Motivated by
the success of HOG in human detection [6], we extend the
HOG and propose a spatial pyramid representation to encode
the 3DMTM for action recognition. In contrast to the PHOG
descriptors proposed in [3] and [27], our proposed PHOG
is directly extracted from the entire templates of 3DMTM,
without extracting edges of objects or capturing the interesting
regions, which is necessary in [3] and [27], respectively.
Compared to the original depth data, the proposed 3DMTM-
PHOG descriptor is more compact and more discriminative to
encode human actions. Depth maps contain a great amount
of data which could result in high computational costs. We
then apply Principal Component Analysis (PCA) [19] on the
3DMTM-PHOG descriptor to reduce redundancy and increase
the recognition speed. Support vector machine (SVM) [4]
is employed to recognize multiple action categories in the
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final stage. The experiments on MSR Action3D dataset [12]
demonstrate that the proposed method is able to achieve better
recognition accuracy than the state-of-the-art methods.

The remainder of this paper is organized as follows.
Section II reviews three types of existing methods for action
recognition. In section III, we provide a detailed procedure
of our proposed method based on 3DMTM-PHOG. A variety
of experimental results and discussions are presented in Sec-
tion IV. At last, we give a conclusion of the paper and outline
the future work in section V.

II. RELATED WORK

In traditional video sequences captured by RGB cameras,
as human actions are showing spatio-temporal patterns, ac-
tion recognition mainly focuses on analyzing spatio-temporal
volumes. The spatio-temporal interest points (STIPs) [10] are
widely used in action recognition from videos. Besides, it
is a common practice to use the distributions of the local
features like HOG/HOF [11] or HOG3D [9] to represent the
local spatio-temporal pattern. These local features are then
combined to model different actions. Bobick and Davis [2]
propose Motion History Image (MHI) and Motion Energy
Image (MEI) for template matching. Tian et al. [22] employ
Harris detector and local HOG descriptor on MHI to perform
action recognition and detection. The core of these approaches
is the detection and representation of spatio-temporal volumes.

With the release of depth sensors, research of action
recognition based on depth information has been explored.
Motivated by the joints estimation of Kinect and associated
SDK, there have been many different approaches relying on
joint points for action recognition. In [16], actions are modeled
by dynamic temporal warping (DTW), which makes the 3D
joint positions to a template, and action recognition can be
done through a nearest-neighbor classification method. In [26],
the joints of the skeleton are used as interest points. In this
way, the shapes of the area surrounding the joint along with the
joint location information are captured using a local occupancy
pattern feature and a pairwise distance feature, respectively.
Xia et al. [28] propose a compact representation of postures
named HOJ3D using the 3D skeletal joint locations from
Kinect depth maps. Then they train HMMs to classify the
sequential postures into action types. Yang et al. [29] propose
a type of features by adopting the differences of joints. Eigen-
Joints are then obtained by PCA for classification. However,
the 3D joint positions that are generated via skeleton tracking
from the depth map sequences are generally more noisy. The
performance of joint based methods heavily depends on a good
estimation of skeleton information.

Furthermore, many other methods are proposed for action
recognition based on the original depth data. Li et al. [12]
propose a bag of 3D points model for action recognition.
A set of representative 3D points from the original depth
data is sampled to characterize the posture being performed
in each frame. The 3D points are then retrieved in depth
maps according to the contour points. Oreifej et al. [17]
describe the depth sequence using a histogram capturing the
distribution of the surface normal orientation in the 4D space
of time (HON4D), depth, and spatial coordinates. However,
these approaches generate a considerable amount of data which
result in expensive computations in classification.

Different from these approaches, a novel descriptor
(3DMTM-PHOG) is proposed in this paper to represent dis-
criminative features of human actions, and we apply SVM
to classify the proposed descriptors. In our framework, we
employ 3DMTM to represent the action as a set of tempo-
ral templates. The 3DMTM is able to represent the motion
information and static posture information of human actions
in 3D space. Then 3DMTM-PHOG descriptor is proposed to
represent the 3DMTM in different degree of details according
to the selected pyramid levels. It requires no extraction of
edges or interesting regions, which is necessary in some other
methods. The proposed descriptor does not involve compli-
cated computations (e.g., bag of 3D points and HON4D), and
it is much more robust to model 3D actions.

III. PROPOSED METHOD

The proposed framework for human action recognition
from depth maps is demonstrated in Fig. 1. As shown, the
framework consists of three components, 3D motion trial
model (3DMTM) for action representation, feature extraction
from 3DMTM using 3DMTM-PHOG descriptor and classifi-
cation.

Fig. 1. The framework of the proposed method

A. 3D Motion Trial Model

MHI [2] presents the motion history by condensing the
action sequence into a single gray scale image, preserving
dominant motion history information. Although binary images
or silhouette based images are able to represent a wide variety
of body configurations, they could produce ambiguities in
the presence of occlusions of body. Additionally, improper
implementation of the update function, the MHI fails to cover
most of the motion regions. Furthermore, the information
of static posture history regions, repetitive movements and
repetitive static postures is ignored in the MHI template [13].

In order to increase the robustness of action representation,
we employ 3D Motion Trail Model (3DMTM) [13] to represent
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human actions in 3D space. The 3DMTM employs four
templates along the front view, i.e. depth motion history image
(D-MHIf ), average motion image (AMIf ), static posture his-
tory image (SHIf ), and average static posture image (ASIf ).
Additionally, another two D-MHIs (D-MHIt and D-MHIs)
along the top view and side view are also included in the
3DMTM.

The motion update function ΨM(x, y, t) and static posture
update function ΨS(x, y, t) are defined to indicate the regions
of motion and static posture with action performing. They are
called for every frame analyzed in the action sequence:

ΨM(x, y, t) =

{
1 if Dt > ςM ,
0 otherwise.

(1)

ΨS(x, y, t) =

{
1 if It −Dt > ςS ,
0 otherwise.

(2)

where x, y represent pixel position and t is time. It =
(I1, I2, . . . , IT ) is a depth map sequence and Dt =
(D1, D2, D3, . . . , DT ) is a difference image sequence indicat-
ing the absolute difference between two frames. In addition,
these two update functions need thresholds ςM and ςS for
motion and static information between consecutive frames.

Therefore, the depth motion history image (D-MHI)

HM(x, y, t) can be obtained by using motion update function
ΨM(x, y, t):

HM(x, y, t) =

{
T if ΨM(x, y, t) = 1
HM(x, y, t− 1)− 1 otherwise

(3)

Additionally, static posture history image (SHI) HS(x, y, t)
can be generated utilizing the static posture update function
ΨS(x, y, t) to compensate for static regions over the whole
action sequence, which can be obtained in the similar way as
D-MHI:

HS(x, y, t) =

{
T if ΨS(x, y, t) = 1
HS(x, y, t− 1)− 1 otherwise

(4)

Fig. 2 shows the D-MHIf and SHIf generated from the
front view of one sample action (horizontal arm wave).

(a) D-MHIf (b) SHIf

Fig. 2. D-MHIf and SHIf from front view of one sample action

In order to cover the information of repetitive movements
and repetitive static postures over the whole action sequence,
average motion image (AMIf ) and average static posture
image (ASIf ) are employed. AMIf and ASIf are defined as
follows:

AM =
1

T

T∑
t=1

ΨM(x, y, t) (5)

AS =
1

T

T∑
t=1

ΨS(x, y, t) (6)

Fig. 3 shows the AMIf and ASIf from the front view of
one sample action.

(a) AMIf (b) ASIf

Fig. 3. AMIf and ASIf from front view of one sample action

As human bodies and motions are performed in 3D space,
the information loss in the depth channel could cause sig-
nificant degradation of the representation and discriminating
capability for human actions. In order to make use of the
additional motion information from depth maps, each depth
frame can be projected onto three orthogonal Cartesian planes,
as shown in Fig. 4. Considering the information from the front
view is dominant for the action and the projections onto top
view and side view can be very coarse due to the resolution
of the depth maps, only D-MHIt and D-MHIs are computed
from the projections on top view and side view, respectively.
Therefore, one action depth sequence can be modeled as six
templates using the 3DMTM, as shown in Fig. 1.

Fig. 4. Depth frame projections

B. The 3DMTM-PHOG Descriptor

Histograms of Oriented Gradients (HOG) has been ex-
perimentally proved to outperform other features to encode
human figures in human detection [6]. In addition, edges and
interesting regions can effectively encode object shapes and ar-
eas, and they have been widely used for action representation.
Bosch et al. [3] extend the HOG and propose a spatial pyramid
representation of object edges based on HOG to encode object
shapes. In contrast to [3], the edges of human subjects are not
extracted in the PHOG proposed in [27]. Instead, the gradients
on the whole interesting regions are used to accumulate a
histogram. However, edges or interesting regions are usually
difficult to segment or extract in practice. To this end, we
propose a novel descriptor based on 3DMTM and PHOG
to characterize local shapes at different spatial scales for
action recognition. The proposed 3DMTM-PHOG descriptor
is extracted from the calculation of gradients in a dense grid
of the 3DMTM to encode human actions representation. It is
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directly performed on the six templates from the 3DMTM,
which requires no edge or interesting regions extraction.

In HOG, the magnitude m(x, y) and orientation θ(x, y) of
the gradient on a pixel (x, y) are calculated as:

m(x, y) =

√
gx(x, y)

2
+ gy(x, y)

2
(7)

θ(x, y) = arctan
gx(x, y)

gy(x, y)
(8)

where gx(x, y) and gy(x, y) are image gradients along the
x and y directions, respectively. In 3DMTM-PHOG, each
template is divided into small spatial grids in a pyramid way
at different pyramid levels. The pyramid at level l has 2l × 2l
grids, as shown in Fig. 5. Each gradient orientation is quantized
into B bins. Gradients over all the pixels within a grid are
accumulated to form a local B bins 1-D histogram. Therefore,
each template from 3DMTM at level l is represented by a
B × 2l × 2l dimension vector. Since there are six templates
in 3DMTM, we concatenate the six PHOG vectors as the
3DMTM-PHOG descriptor. The obtained feature vector, V ∈
R

d (d = 6 × B × ∑L
l=1 (2

l × 2l)), is the 3DMTM-PHOG
descriptor of the 3DMTM. In our experiment, for B = 9 bins
and L = 3 levels, the descriptor will be a 4536-dimension
vector.

Fig. 5. 3DMTM-PHOG performed on D-MHIf

The dimension of the 3DMTM-PHOG descriptor (e.g.,
d = 4536 when B = 9, L = 3) is relatively high, which
is not effective for classification. Many dimension reduction
approaches have been proposed to solve this kind of problem.
We employ the widely used principal component analysis
(PCA) [19] due to its simplicity and effectiveness. Let Γ ∈
R

p×d denote the first p principal components learned from
the 3DMTM-PHOG descriptors of the training actions. We
project the 3DMTM-PHOG descriptor V to the linear subspace
spanned by the principal components Γ:

Y = ΓT (V − V̄ ) (9)

where V̄ ∈ R
d is the mean 3DMTM-PHOG descriptor of

all training actions, and Y ∈ R
p is the final 3DMTM-

PHOG descriptor of the action. Moreover, after projecting
the 3DMTM-PHOG descriptor to its principal subspaces, the
speed of the action recognition can be increased without loss
of accuracy.

C. Classification

As for classification, support vector machine (SVM) [4]
is adopted for the final stage to classify the actions. A well-
known SVM library LIBSVM [5] is used to train 3DMTM-
PHOG and test the performance. Given that the RBF kernel
can non-linearly map samples into a higher dimensional space,
it is used to handle our case. The optimal parameters of the
RBF kernel are obtained by 5-fold cross-validation procedure
over the training actions.

IV. EXPERIMENTS

The proposed method has been evaluated on the MSR Ac-
tion3D dataset [12]. We compare the state-of-the-art methods
to our approach. In all experiments, we select three levels for
3DMTM-PHOG descriptor with 95% principal components for
PCA. The experimental results show that the 3DMTM-PHOG
descriptor represents the human actions very well in terms of
showing higher recognition accuracies.

A. MSR Action3D Dataset

The MSR Action3D dataset [12] is an action dataset of
depth sequences captured by a depth sensor similar to the
Kinect device. It contains 567 depth map sequences. There
are 20 action types: high arm wave, horizontal arm wave,
hammer, hand catch, forward punch, high throw, draw x,
draw tick, draw circle, hand clap, two hand wave, side-
boxing, bend, forward kick, side kick, jogging, tennis swing,
tennis serve, golf swing, pick up & throw. Each action is
performed by 10 subjects for 2 or 3 times. Some frames of
the action sequences are shown in Fig. 6. The background in
this dataset is preprocessed to clear the discontinuities induced
from undefined depth regions. Nevertheless, this dataset is still
challenging because many of the actions are highly similar to
each other.

Fig. 6. Sample frames from the MSR Action3D dataset

B. Comparisons on Three Subsets

In order to evaluate the performance of the proposed
method, our experiments are first conducted using different
number of training samples. We follow the same experimental
settings as [12] to divide the 20 actions into three subsets, each
having 8 actions as listed in TABLE I. All the subsets (AS1,
AS2 and AS3) are deliberately constructed so that similar
actions are included within the same subset. For each subset,
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Method (%)
T1 T2 CST

AS1 AS2 AS3 Overall AS1 AS2 AS3 Overall AS1 AS2 AS3 Overall

Bag of 3D Points [12] 89.5 89.0 96.3 91.6 93.4 92.9 96.3 94.2 72.9 71.9 79.2 74.7

Histograms of 3D Joints [28] 98.5 96.7 93.5 96.2 98.6 97.9 94.9 97.2 87.9 85.5 63.5 79.0

Eigenjoints [29] 94.7 95.4 97.3 95.8 97.3 98.7 97.3 97.8 74.5 76.1 96.4 82.3

3DMTM-PHOG 97.3 97.4 98.7 97.8 100.0 100.0 100.0 100.0 93.4 82.3 96.4 90.7

TABLE II. PERFORMANCE EVALUATION OF PROPOSED METHOD ON THREE SUBSETS

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)

Horizontal arm wave (HoW) High arm wave (HiW) High throw (HT)
Hammer (H) Hand catch (HC) Forward kick (FK)

Forward punch (FP) Draw x (Dx) Side kick (SK)
High throw (HT) Draw tick (DT) Jogging (J)
Hand clap (HC) Draw circle (DC) Tennis swing (TSw)

Bend (B) Two hand wave (THW) Tennis serve (TSr)
Tennis serve (TSr) Forward kick (FK) Golf swing (GW)

Pickup & throw (PT) Side boxing (SB) Pickup & throw (PT)

TABLE I. THE THREE ACTION SUBSETS

there are three different tests, i.e. Test One (T1), Test Two (T2),
and Cross Subject Test (CST). In Test One, 1/3 of the samples
are used as training and the rest as testing; in Test Two, 2/3
samples are used as training and the rest as testing; in the Cross
Subject Test, subject 1, 3, 5, 7, 9 are used for training and 2,
4, 6, 8, 10 are used for testing. Since different subjects have
their own styles to perform actions, there are large variations
among training and testing actions in the Cross Subject Test.

We compare our proposed method with other methods on
the three subsets, and the overall accuracies are also provided
for each test. As shown in TABLE II, the performance of
3DMTM-PHOG is superior to other methods in terms of
accuracies on all tests. The Bag of 3D Points [12] is a method
proposed for action recognition based on the original depth
data, while Histograms of 3D Joints [28] and Eigenjoints [29]
rely on the estimation of joints positions. The results reflect
the robustness of our proposed method, and demonstrate the
3DMTM-PHOG can represent distinctive features of human
actions. Especially, our method obtains 100% recognition
accuracy on Test Two, and outperforms other methods by
8%∼16% on the Cross Subject Test.

C. Comparisons on Cross Subject Test

We then compare the proposed method with other methods
which have been already widely used for action recogni-
tion (i.e. Recurrent Neural Network [15], Dynamic Temporal
Warping [16], and Hidden Markov Model [14]) on Cross
Subject Test. The Cross Subject Test is more challenging
because of the considerable variations in actions performed by
different subjects. Cross subjects generate much larger intra-
class variance than non-cross subjects.

TABLE III shows the experimental results by various meth-
ods. Our proposed method achieves the highest recognition
accuracy of 90.7% on Cross Subject Test. Note that the
Acionlet Ensemble [26] requires a feature selection process
from 3D joint features and a multiple kernal learning process
based on the SVM classifier to achieve the accuracy of 88.2%,
whereas our proposed method is based on the original depth
data without relying on the estimation of 3D joints positions.
Especially, considering the large intra-class variations in this
dataset, the proposed framework is quite robust.

Method Accuracy (%)

Recurrent Neural Network [15] 42.5
Dynamic Temporal Warping [16] 54.0
Hidden Markov Model [14] 63.0
Bag of 3D Points [12] 74.7
Histogram of 3D Joints [28] 79.0
Eigenjoints [29] 82.3
STOP Feature [24] 84.8
Random Occupancy Pattern [25] 86.2
Actionlet Ensemble [26] 88.2

3DMTM-PHOG 90.7

TABLE III. EVALUATION OF METHODS ON THE CROSS SUBJECT TEST

Furthermore, confusion matrices of our method on Cross
Subject Test are shown in Fig. 7. Actions with high similarity
could produce relative low accuracies. In AS1, most actions
are confused with forward punch (FP), especially for Hammer
(H) and High throw (HT). In AS2, Draw x (Dx), Draw tick
(DT), and Draw circle (DC) are confused between each other,
as they have highly similar movements. Since actions in AS3
have significant differences, the recognition results are better
than the other subsets.

(a) AS1 of CST (b) AS2 of CST

(c) AS3 of CST

Fig. 7. Confusion matrices on Cross Subject Test

V. CONCLUSION

This paper presents a new effective framework to perform
human action recognition on depth sequences. The framework
is based on the proposed 3DMTM-PHOG descriptor, which
can better represent the human actions in a compact and
discriminative way. The 3DMTM is able to capture the motion
information and static posture information from front/top/side/
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views. To encode the feature from the templates of 3DMTM,
we propose to represent each template using PHOG descriptor
in different degree of details according to the selected pyramid
levels. The proposed 3DMTM-PHOG descriptor requires no
edge or interesting regions extraction, which is usually neces-
sary in some other methods. We adopt PCA to project the de-
scriptor onto its principal subspaces to reduce the redundancy
and increase the speed of recognition. The experimental results
on MSR Action3D dataset demonstrate the effectiveness and
robustness of the proposed 3DMTM-PHOG descriptor. The
proposed method obtains 100% recognition accuracy on Test
Two, and on the most challenging Cross Subject Test it obtains
90% recognition accuracy, which significantly outperforms the
existing methods. Our future work will focus on multimodal
information for action recognition, i.e. combining joint posi-
tions and original depth data, to improve recognition accuracy
in the Cross Subject Test.
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