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Automatic Environmental Surveillance Assisted Living 

Sport Video Analysis Human Computer Interaction 

Sensors ? 
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Wearable Sensors 

Vision Sensors 

• Extensive calibration 
• Restricted natural movement 

• Flexibility 
• Markless 
• Inexpensive 
• Non-obtrusive 
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Depth images RGB images Kinect 

• Each pixel presents the 
distance between 
captured object and the 
camera. 
 

• Motion ambiguities 
could be by passed. 
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Fig. The general framework of the proposed method 
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Preprocessing 3D Gesture 
Representation 

Feature Extraction & 
Classification 

background 

noise 

Background 

• Otsu’s method1 

• Median Filter 

1. Otsu, Nobuyuki. “A threshold selection method from gray-level histograms.”1975. 



SCHOOL OF COMPUTING AND MATHEMATICS 

Preprocessing 3D Gesture 
Representation 

Feature Extraction & 
Classification 

• Motion History Image (MHI)1 

1. Bobick, Aaron F., and James W. Davis. “The recognition of human movement using temporal templates”, 2001. 
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• Motion History Image (MHI)1 

1. Bobick, Aaron F., and James W. Davis. “The recognition of human movement using temporal templates”, 2001. 

Limitations: 
• fails to cover obstructed movements. 
 

• information about static postures and repetitive movements is ignored. 
 

• only encodes information along the xoy-plane 
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• 2D Motion Trail Model (2D-MTM) 
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Motion update function: 

S

1 if ,
Ψ ( , , )

0 otherwise.
t t SI D ς

x y t
− >

= 


Static posture update function: 
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Depth motion history image (D-MHI): 
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Static posture history image (SHI): 

D-MHI SHI 
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Average motion image (AMI): 
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Average static posture image (ASI): 

AMI ASI 
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• 3D Motion Trail Model (3D-MTM) 

xoy-plane 

yoz-plane 

xoz-plane 

• D-MHI 
• AMI 
• SHI 
• ASI 

• D-MHI 

• D-MHI 
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D-MHI SHI AMI ASI 

D-MHI 
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• is based on depth images 
 

• contains the information of 
motion history, static 
posture history, average 
motion and average static 
posture 
 

• represents movements 
from xoy-plane, xoz-plane 
and yoz-plane 

• uses silhouette images 
 

• only records the most 
recent movements 
 

• only keeps motion 
information on a single 
plane 

• 3D-MTM • MHI 
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Preprocessing 3D Gesture 
Representation 

Feature Extraction 
& Classification 

Dimension of the feature vector: 
N × N × B = 3 × 3 × 9 
Dimension of 3D-MTM representation: 
N × N × B × 6 = 3 × 3 × 9 × 6 = 486 

• HOG • Classification 

• SVM 
• Maximum Correlation Coefficient 
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Sample frames from the MSR Action3D dataset 

Sample frames from the ChaLearn gesture dataset 

• MSR Action dataset 
• 20 action types 
 

• Each action is performed by 
10 subjects for 2 or 3 times 
 

• Resolution: 320 × 240 

• ChaLearn gesture dataset 
• Used for one-shot learning 
challenge 
 

• Performed on the first 10 data 
batches 
 

• Each test video contains 1 to 5 
gestures 

• Datasets 
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MSR Action3D dataset 

Bag-of-3D-Points1 Proposed Method 
T1-AS1 89.5% 96.0% 
T1-AS2 89.0% 94.9% 
T1-AS3 96.3% 97.3% 
T2-AS1 93.4% 100.0% 
T2-AS2 92.9% 97.5% 
T2-AS3 96.3% 100.0% 

CST-AS1 72.9% 73.7% 
CST-AS2 71.9% 81.5% 
CST-AS3 79.2% 81.6% 

Tab. Recognition accuracy comparison of different subsets that are 
Test One (T1), Test Two (T2), and Cross Subject Test (CST) 

1. Li, Wanqing, Zhengyou Zhang, and Zicheng Liu. "Action recognition based on a bag of 3d points”. 2010 
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One-shot learning ChaLearn gesture dataset 

Method Average error rate 
Baseline 62.8% 
Dynamic Time Warping 43.1% 
Principle Motion 37.4% 
MHI 37.6% 
2D-MTM (ours) 24.4% 
3D-MTM (ours) 21.7% 

Tab. Performance comparison  
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One-shot learning ChaLearn gesture dataset 

Fig. Results of the 10 data batches 
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• A 2D motion trail model (2D-MTM) is proposed to represent the motion 
information and static posture information of a gesture sequence. 
 

• A novel 3D model (3D-MTM) is extensively proposed by projecting 
depth images onto other two planes, and it is shown to be robust to model 
gestures in 3D space. 
 

• The proposed method based on 3D-MTM achieves competitive 
performance on MSR Action3D dataset and ChaLearn dataset.. 
 

• The future work will focus on gesture recognition on variant subjects to 
improve recognition performance in the Cross Subject Test. 
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Thank you 
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