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Abstract

In this paper an effective method is presented to rec-
ognize human gestures from sequences of depth images.
Specifically, we propose a three dimensional motion trail
model (3D-MTM) to explicitly represent the dynamics and
statics of gestures in 3D space. In 2D space, the motion trail
model (2D-MTM) consists of both motion information and
static posture information over the gesture sequence along
the xoy-plane. Considering gestures are performed in 3D
space, depth images are projected onto two other planes
to encode additional gesture information. The 2D-MTM is
then extensively combined with complementary motion in-
formation from additional two planes to generate the 3D-
MTM. Furthermore, the Histogram of Oriented Gradient
(HOG) feature vector is extracted from the proposed 3D-
MTM as the representation of a gesture sequence. The ex-
periment results show that the proposed method achieves
better results on two publicly available datasets namely
MSR Action3D dataset and ChaLearn gesture dataset.

1. Introduction
Recognition of human gestures has always remained an

active research topic of great interest over the last three
decades. There are many promising gesture recognition
applications in computer vision, such as automatic envi-
ronment surveillance, assisted living, video indexing, sport
video analysis and human computer interaction. Sensors
used for gesture recognition include wearable sensors and
vision sensors. Compared with the extensive calibration and
restricted natural movement of the wearable sensors, vision
sensors address these issues. In recent years, vision sensors
such as video cameras are widely used for gesture recog-
nition and research on vision-based interaction has been ac-
tively studied. The task of gesture recognition has made sig-
nificant advances using video cameras. Despite the research
efforts in the past decade and many encouraging successes,
accurate gesture recognition is still a challenging task. The
advances have been limited to the use of RGB images cap-

tured by video cameras, ignoring the important information
of depth. Depth information has long been regarded as an
essential part of successful gesture recognition [15]. In ad-
dition, how to model the 3D human gestures that are dy-
namic, static and ambiguous in an efficient way is another
major issue.

The Kinect camera provides depth information through
collecting a sequence of depth images for human gestures.
Depth images collect depth information as 8-bit gray level
for each pixel that presents the distance between the cap-
tured object and the camera. Figure 1 shows RGB images
and corresponding depth images for one gesture sequence
from ChaLearn gesture dataset [14]. As seen, the motion
ambiguity of the video camera, such as the huge color and
texture variability induced by clothing, hair, skin and back-
ground, could be bypassed. This paper studies the recogni-
tion of human gestures from sequences of depth images.

(a) RGB images

(b) Depth images

Figure 1. RGB images and depth images for one sample gesture
sequence from ChaLearn gesture dataset [14]

Depth images contain a great amount of data which
could result in high computational costs. An effective hu-
man gesture recognition method using a depth camera is
presented in this paper. The general framework of our
method is illustrated in Figure 2. Based on depth data, ges-
ture regions can be easily segmented from background with
a suitable threshold of depth value. After that, smoothing is
used in order to make sure there is less noise in depth images
so that gesture analysis could not be negatively influenced
by the noise. We then use the proposed model (3D-MTM)
to represent gesture motion information and static posture



Figure 2. The general framework of the proposed method

information in 3D space. The next step is feature extrac-
tion and classification. The Histogram of Oriented Gradi-
ents (HOG) [11] descriptors are exploited to describe the
local distribution of gradients for feature vector extraction.
A classifier compares the features of training samples and
test samples to identify the gesture types.

More importantly, we propose a new 3D model for hu-
man gestures, called the Three Dimensional Motion Trail
Model (3D-MTM). Gestures can be divided into two distinc-
tive categories: dynamic and static [5]. A dynamic gesture
is intended to move over a period of time while a static ges-
ture is observed at the gesture in which a single posture is
held for a certain duration. To understand the meaning of
the gesture, it is necessary to interpret all the static and dy-
namic gestures over a period of time. Thus, gesture recog-
nition is to interpret a continuous gesture sequence. The
proposed motion trail model in 2D space (2D-MTM) ex-
plicitly models the temporal motion information and static
posture information of human gestures. We use the depth
motion history image (D-MHI) and the average motion im-
age (AMI) to encode motion information of gestures. Simi-
larly, the static posture history image (SHI) and the average
static posture image (ASI) of gestures are generated con-
taining static posture information. The 2D-MTM consists
of both motion information and static posture information
over the gesture sequence along the xoy-plane. Further-
more, human gestures captured by video cameras can only
encode the information induced by the lateral movement of
the scene parallel to the image plane. As human bodies and
motions are performed in 3D space, the information loss
in the depth channel could cause significant degradation of
the representation and discriminating capability for human
gestures. For better modeling human gestures in 3D space,
our idea is to obtain the complementary motion information
from other views in 3D space to compensate for the lost ges-
ture information in 2D space. After projecting depth images
onto other two planes in 3D space, the 2D-MTM is then ex-
tensively combined with complementary motion informa-
tion from additional two planes to generate the 3D-MTM.
The 3D-MTM of a gesture contains disparity information
from the corresponding depth images.

Our key contributions are the following: 1) a 2D mo-
tion trail model (2D-MTM) is proposed to represent the

motion information and static posture information of a ges-
ture sequence; 2) a novel 3D model (3D-MTM) is exten-
sively proposed by projecting depth images onto other two
planes, and it is shown to be robust to model gestures in 3D
space; 3) the proposed method based on 3D-MTM achieves
competitive performance on two benchmark datasets: MSR
Action3D dataset [18] and one-shot learning ChaLearn ges-
ture dataset [14]. The experiments have shown that not only
does our method achieve better performance on the bench-
mark dataset that has multiple training data, but also it gen-
eralizes well on the one-shot learning gesture dataset.

2. Related work

Gesture recognition approaches can be categorized into
three main categories: template based approaches, volu-
metric approaches and machine learning based approaches.
Template based approaches usually convert a gesture se-
quence into a static shape pattern (e.g., MHI [6]), and
then the extracted features are used to compare to the pre-
stored prototypes during recognition. Template matching
approaches are easy to implement and require less computa-
tional load. Volumetric approaches consider the whole ges-
ture sequence as a 3D volume of pixel intensities instead of
extracting features on a frame basis. These approaches gen-
erally extend typical image features to the 3D case. Interest
point based methods [16] and geometric methods [20] are
two commonly used methods. These kinds of approaches
have disadvantages of high computational cost and com-
plexity. Machine learning techniques are employed for ges-
ture recognition in recent years. k-NN based methods [10]
are simple to implement, but all the training data will be
used when recognizing gestures, which is memory and time
expensive. SVM based methods [4] are the most popular
application for gesture recognition as a group of associ-
ated supervised learning techniques. Bag-of-features meth-
ods [27] represent the gesture sequence as unsorted sets of
features, and then the features are quantized into discrete
vocabularies by learning. The HMM based methods [8]
have been frequently used for modeling human motions as
they efficiently abstract time series data, and can be used
for subsequent motion recognition. These methods usually
require complex interactive computation.

There have been many surveys on human gesture recog-



nition and analysis [1, 2, 22, 13], most of which have cited
the motion history image (MHI) method [6] as one of the
most important methods. In the MHI, the silhouette se-
quence is condensed into one gray scale image, while domi-
nant motion information is preserved. Therefore, it can rep-
resent a gesture sequence in a compact manner. Besides,
the MHI is not so sensitive to silhouette noises, like holes,
shadows, and missing parts [3]. These advantages make
MHI a suitable candidate for motion and gait analysis [19].
Tian et al. [26] use Harris detector and local HOG descrip-
tor on MHI to perform gesture recognition and detection.
The MHI expresses the motion history by the intensity of
every pixel in a temporal manner. However, the traditional
MHI method has the limitation of scalability because only
lateral motion of the gesture is analyzed. Human gestures
are performed in 3D space, which means MHI performed in
2D space may miss some motion information of the gesture
performed in the real world. We propose a novel model to
represent distinctive features of human gestures, and apply
a classifier to compare the features extracted from the pro-
posed model. The advantages of the proposed model are:
1) the proposed model is based on depth images, so ges-
ture information is condensed into one model using depth
data, while MHI uses silhouette images which could gen-
erate ambiguous gestures representation; 2) the 3D-MTM
contains the information of motion history, static posture
history, average motion and average static posture through
the entire gesture sequence, while MHI only records the
most recent movements; 3) our model represents move-
ments from xoy-plane, xoz-plane and yoz-plane, i.e. three
orthogonal projections of depth images, while MHI only
keeps motion information on a single plane.

3. Proposed method
To represent the gesture motion information and static

posture information in 3D space, a novel 3D model (3D-
MTM) is proposed. We project depth images onto three
planes and obtain D-MHI, SHI, AMI and ASI on xoy-plane,
and D-MHI on the other two planes. HOG descriptors are
extracted from 3D-MTM and concatenated as the final ges-
ture representation. This section gives a detailed descrip-
tion of the proposed gesture recognition method based on
the 3D-MTM, including preprocessing, 3D gesture repre-
sentation and feature extraction and classification.

3.1. Preprocessing

Preprocessing consists of two steps: background re-
moval and image smoothing. In order to represent human
gestures well, to segment the gesture regions out of each
video frame is an essential step for gesture recognition. In
the case of having no prior background image and dynamic
background, it is a challenging task for traditional methods.
To this end, we adopt depth images to segment gesture re-

gions. In depth images, the values of pixels belonging to
background have a great difference from those belonging to
the object. Utilizing the property, the gesture regions in a
sequence can be easily segmented from the background by
using Otsu’s method [23] to classify the pixels. Besides,
the depth images have other drawbacks, one of which is the
noise at the edge of objects. With missing bits and a pretty
serious flickering issue, noise in depth images resembles a
type of salt and pepper noise. Motion information is sen-
sitive to silhouette noise, so smoothing of depth images is
necessary. We then adopt a median filter [24] for spatial fil-
tering to replace the pixel value with the median value of the
sub-image. Thus, it removes randomly generated noise and
smooths the original image. After applying noise reduction
to the depth image, the resulting motion description is less
prone to faulty defects from the depth sensor. The prepro-
cessing operation is highly effective for the following pro-
cess in our method. Figure 3 shows the original depth im-
age and the image after preprocessing operation from one
gesture sequence. As seen, the gesture regions are clearly
segmented and noise has been removed.

(a) Original depth image (b) Preprocessed image

Figure 3. Preprocessing of original depth image

3.2. 3D Gesture representation

3.2.1 Motion history image

Motion history image (MHI) and motion energy image
(MEI) templates were proposed by Bobick and Davis [6] to
describe where there is motion and how the object is mov-
ing. All the frames in one gesture sequence are projected
onto a single image over the range of time. The MHI tem-
plate has the advantage that the temporal motion informa-
tion may be encoded into one image, and the MHI spans
the time scale of human gestures [7]. The MHI H(x, y, t; τ)
can be obtained from an updating function Ψ(x, y, t):

H(x, y, t; τ) =

{
τ if Ψ(x, y, t) = 1,
max(0,H(x, y, t− 1; τ)− δ) otherwise.

(1)
where x, y represent pixel position and t is time. Ψ(x, y, t)
signals object presence in the current gesture image with
coordinate (x, y) at the tth frame of the gesture sequence.
τ decides the temporal duration of the motion, and δ is the
decay parameter. The update function Ψ(x, y, t) is called
for every frame analyzed in the gesture sequence. Finally,



a scalar-valued image can be generated through the com-
putation, presenting more recent moving pixels brighter
and vice-versa [6, 21]. A final MHI template H(x, y, t; τ)
records the temporal history of motion in the corresponding
gesture sequence.

3.2.2 2D motion trail model

In the MHI, the gesture sequence is condensed into a sin-
gle gray scale image, preserving dominant motion history
information. It keeps a record of temporal changes at each
pixel location, which decays over time [28]. MHI presents
the motion history using binary cumulative motion images.
Binary frame-to-frame difference methods are widely used
for motion representation. Although binary images or sil-
houette based images are able to represent a wide variety of
body configurations, they could produce ambiguities in the
represented motion. However, in the presence of occlusions
of body, or improper implementation of the update function,
the MHI fails to cover most of the motion regions. For in-
stance, most of the arm and hand movements performed in
front of a person’s body become “invisible”. In addition, the
information of static posture history, repetitive movements
and repetitive static postures is ignored in the MHI template.
To overcome the limitations, the proposed 2D model in this
paper employs four templates generated from depth images,
i.e. depth motion history image (D-MHI), average motion
image (AMI), static posture history image (SHI) and av-
erage static posture image (ASI), to encode supplementary
essential information of gestures to increase the robustness
for representation.

Assume It = (I1, I2, . . . , IT ) is a depth image sequence
and let Dt = (D1, D2, D3, . . . , DT ) be a difference image
sequence indicating the absolute difference between con-
secutive frames:

Dt =

{
I1 if t = 1
|It − It−1| otherwise

(2)

where t is the time and T is the total number of frames in
one gesture sequence. To indicate the regions of motion
and static posture, the motion information and static pos-
ture information of It can be obtained through motion up-
date function ΨM(x, y, t) and static posture update function
ΨS(x, y, t):

ΨM(x, y, t) =

{
1 if Dt > ςM ,
0 otherwise.

(3)

ΨS(x, y, t) =

{
1 if It −Dt > ςS ,
0 otherwise.

(4)

where ςM and ςS are the thresholds for motion and static
information between consecutive frames. The motion infor-
mation image and static information image from two frames

of one sample gesture are illustrated in Figure 4. It can be
seen that the dynamic regions and static regions are high-
lighted using motion update function and static posture up-
date function.

(a) It−1 (b) It

(c) ΨM(t) (d) ΨS(t)

Figure 4. Motion information and static information

It is obvious that in Equation(1) the larger τ is, the more
information of the gesture could be encoded. In our work, τ
is set as the total number of frames T for the whole gesture
to preserve the whole motion trail information. We define
depth motion history image (D-MHI) as:

HM(x, y, t) =

{
T if ΨM(x, y, t) = 1

HM(x, y, t− 1)− 1 otherwise
(5)

Additionally, we extend D-MHI and utilize the static pos-
ture update function ΨS(x, y, t) to get static posture history
image (SHI) indicating to compensate for static regions over
the whole gesture sequence, which can be obtained in the
similar way as D-MHI:

HS(x, y, t) =

{
T if ΨS(x, y, t) = 1

HS(x, y, t− 1)− 1 otherwise
(6)

Note that there are no maximum operators in Equation(5)
and Equation(6) because parameter τ is set as the whole
duration T causing non-negative values of HM(x, y, t) and
HS(x, y, t). Figure 5 shows the D-MHI and SHI generated
from one sample gesture.

(a) D-MHI (b) SHI

Figure 5. D-MHI and SHI of one sample gesture

In the proposed motion trail model, another two ele-
ments, average motion image (AMI) and average static pos-
ture image (ASI), are employed to provide complementary



information of the gesture for repetitive movements and
repetitive static postures over the whole gesture sequence.

Average motion image (AMI) is to compensate for the
repetitive movements information. The summation of all
motion information using ΨM(x, y, t) and normalization of
the pixel value defines the AMI:

AM =
1

T

T∑
t=1

ΨM(x, y, t) (7)

Average static posture image (ASI) is used to recover the av-
erage static posture information, which can be defined using
static posture information of each frame:

AS =
1

T

T∑
t=1

ΨS(x, y, t) (8)

Figure 6 shows the AMI and ASI of one sample gesture.

(a) AMI (b) ASI

Figure 6. AMI and ASI of one sample gesture

3.2.3 3D motion trail model

Our previous research on 2D-MTM based gesture repre-
sentation has shown that the proposed model carries more
essential gesture information in 2D space than traditional
MHI method. However, the proposed 2D-MTM has some
limitations. It can only encode the information induced
by the lateral movement of the scene motion parallel to
the image plane. As human bodies and motions are per-
formed in 3D space, the information loss in the depth chan-
nel could cause significant degradation of the representa-
tion and discriminating capability for human gestures. With
depth images, we can now extend the proposed 2D-MTM
to 3D space, generating a 3D-MTM which is capable of en-
coding the motion information along two additional planes
(xoz-plane and yoz-plane) besides xoy-plane. Thus the 3D-
MTM uses disparity information of the gesture from xoy-
plane, xoz-plane and yoz-plane, which can robustly dis-
criminate each gesture using information from additional
viewpoints with only one model.

The information from xoy-plane is dominant for the ges-
ture and the projections onto xoz-plane and yoz-plane can
be very coarse due to the resolution of the depth images, so
only D-MHI templates are generated from the projections
on xoz-plane and yoz-plane respectively. The 3D-MTM of

one gesture sequence is demonstrated in Figure 7. There-
fore, one gesture depth image sequence can be modeled as
six templates using the proposed 3D-MTM.

Figure 7. The 3D-MTM generated from one sample gesture

3.3. Feature extraction and classification

HOG [11] is able to characterize the local appearance
and shape on 3D-MTM by the distribution of local intensity
gradients. Thus, each template can be represented as a fea-
ture vector of N ×N ×B dimension, and then we concate-
nate six vectors into one feature vector. In our experiment,
the size N ×N of lattices is 3× 3, and the bin number B is
9. In this way, the 3D-MTM generates a descriptor vector
with the dimension of 6× 3× 3× 9 = 486.

As for MSR Action3D dataset [18], support vector ma-
chine (SVM) is adopted for the final stage to classify the
gestures. A well-known SVM library LIBSVM [9] is used
to train our model and test the performance of the model.
Then we have used RBF kernel which non-linearly maps
samples into a higher dimensional space so it can handle the
case when the relation between class labels and attributes is
non-linear.

One-shot learning ChaLearn gesture dataset [14] only
has one training sample for each gesture class, so we em-
ploy a nonparametric method Maximum Correlation Coef-
ficient as the matching metric by avoiding the issue of over-
fitting.

4. Experimental results

We choose MSR Acion3D dataset [18] and one-shot
learning ChaLearn gesture dataset [14] to evaluate the pro-
posed gesture recognition method. The experimental re-
sults show that the proposed method outperforms than other
methods.



4.1. MSR Action3D dataset

MSR Action3D dataset [18] is an action dataset of depth
image sequences captured by a depth sensor similar to the
Kinect device. This dataset contains 20 action types: high
arm wave, horizontal arm wave, hammer, hand catch, for-
ward punch, high throw, draw x, draw tick, draw circle,
hand clap, two hand wave, side-boxing, bend, forward kick,
side kick, jogging, tennis swing, tennis serve, golf swing,
pick up & throw. Each action is performed by 10 subjects
for 2 or 3 times. There are 567 gesture sequences in total.
The resolution is 320 × 240. Some frames of the gesture
sequences are shown in Figure 8. Those gestures cover var-
ious movements of arms, legs, torso and their combinations.
The background of the gesture is clean in this dataset, but
this dataset is still challenging because many of the gestures
are highly similar to each other.

Figure 8. Sample frames from the MSR Action3D dataset

In order to evaluate the performance of the proposed
method, our experiments are conducted using different
number of training samples. We follow the same experi-
mental settings as [18] to divide the 20 actions into three
subsets, each having 8 actions as listed in Table 1. For each
subset, there are three different tests, i.e. Test One (T1), Test
Two (T2), and Cross Subject Test (CST). In Test One, 1/3
of the samples are used as training and the rest as testing;
in Test Two, 2/3 samples are used as training and the rest
as testing; in the Cross Subject Test, half of the subjects are
used as training and the rest subjects are used as testing.

We compare our proposed method with the state-of-the-
art method [18] on the MSR Action3D dataset in Table 2.
As shown in this table, the proposed method considerably
outperforms the Bag-of-3D-Points. The average recogni-
tion accuracies of our method in Test One, Test Two, and
Cross Subject Test are 96.1%, 99.2% and 78.9%, which in-
crease the average accuracies in [18] by 4.5%, 5.0%, and
4.2%, respectively. The results reflect the robustness of the
proposed 3D-MTM, and demonstrate the 3D-MTM can rep-
resent distinctive features of human gestures.

Action Set 1 Action Set 2 Action Set 3
(AS1) (AS2) (AS3)

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick

Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

Table 1. The three action subsets

Bag-of-3D-Points [18] Proposed Method
T1-AS1 89.5% 96.0%
T1-AS2 89.0% 94.9%
T1-AS3 96.3% 97.3%
T2-AS1 93.4% 100.0%
T2-AS2 92.9% 97.5%
T2-AS3 96.3% 100.0%

CST-AS1 72.9% 73.7%
CST-AS2 71.9% 81.5%
CST-AS3 79.2% 81.6%

Table 2. Recognition accuracy comparison for MSR Action3D
dataset of different subsets that are Test One (T1), Test Two (T2),
and Cross Subject Test (CST)

4.2. One-shot learning ChaLearn gesture dataset

The data in ChaLearn gesture dataset [14] are recorded
using a Kinect camera including both hand and arm ges-
tures. It was used for a one-shot learning challenge of ges-
ture recognition. The key aspect of the dataset is that each
gesture class has only one training sample. Our experiments
are performed on the first 10 data batches of the dataset,
each of which is made of 47 gesture sequences and split
into a training set and a test set. In the dataset, each test
video contains 1 to 5 gestures. Note that in order to verify
the performance of our approach, we use the temporal seg-
mentation annotation provided by [14]. Thus, a test video
is firstly segmented so that we can get several single gesture
sequences from a test video. Some sample frames from this
dataset are shown in Figure 9

Figure 9. Sample frames from the ChaLearn gesture dataset



Method Average error rate
Baseline [14] 62.8%
Dynamic Time Warping [14] 43.1%
Principle Motion [12] 37.4%
MHI [6] 37.6%
2D-MTM (ours) 24.4%
3D-MTM (ours) 21.7%

Table 3. Performance comparison on one-shot learning ChaLearn
gesture dataset

The recognition performance is evaluated using the Lev-
enshtein distance [17]. Table 3 compares the average recog-
nition error rate of the proposed method with results from
other methods: baseline method [14], dynamic time warp-
ing (DTW) [14], principle motion method [12], MHI [6]
method and the proposed 2D-MTM. It can be observed that
the proposed 3D-MTM shows a better performance which
is competitive to the other methods. Our approach achieves
21.7% average error rate, which illustrates that the 3D-
MTM can be effectively adopted for gesture recognition.

Figure 10 shows the recognition error rates of each data
batch using baseline, DTW, principle motion, MHI, 2D-
MTM and 3D-MTM, respectively. It can be found that the
proposed 3D-MTM performs better than other methods on
average. Note that for data batch 7 and 9, the 3D-MTM
does not perform better than 2D-MTM. The reason is that
in these two data batches the motion information from xoz-
plane and yoz-plane induces negative effect instead of pro-
viding complementary information to the dominant gesture
information on xoy-plane. The human movements in these
two data batches are mainly performed on the xoy-plane
and less discriminative movements on xoz-plane and yoz-
plane. Besides, there are other particular batches, data batch
3 and 10, where the main movements are hand movements
and finger movements. Theses subtle movements domi-
nate the whole gesture causing it to be confused with other
similar gestures. We reason the higher error rates in these
batches that there is no hand detector in our approach to
locate the hand position. Thus it can be concluded that our
method performs well when there is large amount of motion
presenting in a gesture.

Figure 10. Results of the 10 data batches

5. Conclusions
In this paper, we have proposed an effective gesture

recognition method by using a novel model 3D-MTM. The
3D-MTM is able to represent the motion information and
static posture information of human gestures along xoy-
plane, and additional motion information from xoz-plane
and yoz-plane. The experimental results on MSR 3DAction
dataset demonstrate that our method outperforms the state-
of-the-art method. In addition, our method also performs
well on the one-shot learning ChaLearn gesture dataset. The
future work will focus on gesture recognition on variant
subjects to improve recognition performance in the Cross
Subject Test.
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